Abstract

- We participated in all the subtasks:
 - TIMEX3 and EVENT spans (TS, ES)
 - TIMEX3 and EVENT attributes (TA, EA)
 - Document-time Relations (DR)
 - Containment Relations (CR)

Example: “April 23, 2014: The patient did not have any postoperative bleeding so we will resume chemotherapy with a larger bolus on Friday even if there is slight nausea.”
- TS: Red, ES: Green
- TA: April 23, 2014 [DATE]: postoperative [PREPOSTEXP]
- EA: chemotherapy [polarity=POS, modality=ACTUAL]
- DR: bleeding BEFORE/docTime
- CR [postoperative CONTAINS bleeding]; [Friday CONTAINS resume]

- Our approach is based on supervised learning, utilizing various sets of syntactic, lexical, and semantic features with the addition of manually crafted rules.
- Our system demonstrated substantial improvements over the baselines in all the tasks and consistent above-median results in virtually all sub-tasks.

Method

- **General approach**
 - Supervised structured learning (CRF) + supervised classification (Logistic Regression)
 - Features: Syntactic, lexical, morphological, distributional, domain specific, dependency and semantic roles
 - Basic features:
 - lowercase: token letter case; if token is title; if token is numeric; if token is stopword; POS tag; brown cluster; prefix; suffix; noun chunk shape of the token; lemma
 - CRF + Logistic Regression
 - Data
 - 293 Train, 147 Dev, 151 Test clinical narratives

- **TS + ES**
 - Base features + Domain specific
 - UMLS Semantic Types
 - Manual rules; For time and also event. E.g. standard patient readings. “Diastolic=55 mm[Hg]”

Results

- **TA + EA**
 - Base features + Rules
 - E.g. “Complete” indicates DEGREE:MOST, “Possibly” indicates MODALITY:HEDGED, and “never” shows POLARITY:NEG

- **DR**
 - Base features + two sets of features
 - Set 1: UMLS semantic type; tense of the related verb in dependency tree; dependency root of the sentence
 - Set 2: class, text and brown cluster of closest TIMEX3 mention; comparison with section time; comparison with document time; sentence tense and modals

- **CR**
 - Base features + Semantic frames, dependency features, UMLS semantic types, verb tense and sentence root

Discussion and Conclusions

- Our approach was based on a feature-rich supervised classification for all the tasks
- We showed consistent improvement over the median results in virtually all the tasks
- Features like brown clusters, dependency based features, domain specific features and SRL features are helpful in most of the tasks
- We observed improvements by adding manual features. Excessive addition of rules, results in increased recall but much lower precision and should be avoided.
- Our approach for narrative containers was limited to intra-sentence relations and many of the missed cases, were due to cross-sentence relations

This work was partially supported by NSF Grant: CNS-1204347 and REU award: HP-1362046.