Revisiting Summarization Evaluation for
Scientific Articles

| | LAB

e Arman Cohan and Nazli Goharian ONNVERSITY

gEORqEOWJ\Q Information Retrieval Lab, Department of Computer Science

UNIVERSITY Georgetown University
{arman, nazli }@ir.cs.georgetown.edu
Summarization Evaluation Evaluation & Results
A Evaluation of text summarization A Data: TAC 2014 scientific summarization benchmark
A Human assessors quantify the quality A Evaluation: Serdlanual evaluation method: Pyramitl¢nkova et al 2007)
A Expensive and not reproducible A Uses golestandard summaries to find important content in an idsammary

A Using evaluation metrics
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A Comparisorby intersection of results (SERA) conclusions
A Comparison by discounted ranking difference (SBEF3)
AVariants: A We studied scientific summarization evaluation through correlation analysis

APlain: Using the entire summary as query A We showed that mosbf ROUGE variants are not reliable for evaluating scientific

AUsing only the key words of the summary as query (SERA _ Summarization |
KW) A Among all ROUGE variants, RO&2@Ed ROUGH show the best results

AUsing only the noun phrases of the summary as query A We proposed an alternative metric, SERAjchoutperforms all ROUGEriants
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