

A Neural Attention Model for Categorizing Patient Safety Events

Arman Cohan¹, Allan Fong², Nazli Goharian¹, Raj Ratwani²

¹ Georgetown University, Washington DC, USA

² MedStar Health, Washington DC, USA

arman@ir.cs.georgetown.edu

Motivation & Background

Medical errors are the third leading cause of death in the US (200K per year)

Neural Attention Model

Examples of error reports:

Patient was ordered and given a medication that had a adverse drug reaction alert

Staff member accidentally stamped on patients toe which resulted in skin laceration

General architecture

- Patient found lying on the floor next to his bed
- This work: Categorizing errors in patient care
 - 1.7 Million reports \bullet
- These events need to be extracted from unstructured text
 - No current national standard for error reporting ullet
 - Front-line staff's priority is prompt patient care \bullet and not necessarily reporting

- Soft attention:
 - Decide which parts of the sequence are more important
 - Instead of considering the last state of the recurrent layer, attend to important time steps

$$c = \sum_{t=1}^{T} \alpha_t h_t$$

- *c* is used for fully connected and then softmax
- α_i are weights for each state and are computed at each time step using a feed forward network

Experiments

Neural Attention Model

- General architecture:
 - Word representation: The embedding layer
 - Initialized with pre-trained vectors
 - Convolutional layer to capture local features
 - length 2 to 6 to capture 2 to 6 gram local features
 - **Recurrent layer** to capture long dependencies and interactions over the sequence
 - Bidirectional-LSTM
 - **neural attention** for Improving sequence representation

	Number of Reports	Number of categories	Avg. length $(char)$	Stdev. length (char)
Dataset 1	$82,\!281$	20	410	321
Dataset 2	$1,\!625,\!512$	9	327	174

		Dataset 1		Dataset 2	
	Methods	Acc	F-1	Acc	F-1
ſ	SVM (Wang & Manning 2012)	70.9	70.6	84.7	83.9
	MNB (Wang & Manning 2012)	71.0	72.3	79.0	79.6
Methods	Gradient Boosting (Chen et al. 2016)	72.1	70.8	76.7	75.5
	CBoW (Zhou et al. 2016)	68.0	63.4	84.6	84.1
	Adaptive CBoW (Zhou et al. 2016)	70.6	69.6	84.8	84.8
Neural Network	CNN (Kim 2014)	72.2	69.5	82.7	83.5
Based Methods	RNN (Dai et al. 2015)	74.5	72.9	83.8	83.2
	Bi-RNN (Dai et al. 2015)	75.2	73.6	84.6	84.5
l	CNN-BIRNN (Tang et al. 2015)	76.6	76.4	86.8	84.6
This work		78.1*	77.3*	88.9*	88.0*

- Problem with recurrent networks:
 - Capturing only the recent context
 - Bi-directional can partially solve, but still a problem in long sequences
 - We use attention to address this problem

Acknowledgment: This project was funded under contract/grant number Grant R01 HS023701-02 from

the Agency for Healthcare Research and Quality (AHRQ), U.S. Department of Health and Human Services

- Error analysis
 - Some categories are very closely related
 - 32% of the misclassified samples in the "blood-bank" category were classified as "lab/specimen".
 - Similar situation about "diagnosis" and "medication" safety
 - events.
 - MISC category
 - Data matters!

www.armancohan.com